Looking for Sources of PFAS in Bay Area Wastewater

Lorien Fono, Miguel Mendez, Diana Lin, Rebecca Sutton
February 4th, 2022
SWB requires PFAS sampling in California

State Water Board has issued 13267/13383 Orders to:

- Drinking water systems (& drinking water near military facilities)
- Airports and Landfills
- Chrome platers
- Bulk fuel terminals/refineries
- POTWs: 4x influent, effluent, and biosolids

⇒ except in Region 2
How we leverage RMP’s mature CECs program to best use resources

1. Inform region-wide understanding
 • (Nearly) all effluent goes to the Bay, not to drinking water sources

2. Develop study design that is efficient and informs management actions
 • Reduce unnecessary costs, resources by sampling representative POTWs
 • Region-wide QA/QC, data management and comparability
 • Investigate sources of PFAS
 • Flexible analyte list

3. Leverage other RMP PFAS studies to gain insight on PFAS fate and transport
Why is the R2/RMP study important?

- POTWs are PFAS receivers, not PFAS sources
- POTWs have limited ability to control PFAS sources or destroy PFAS
- We can use this study to better understand the magnitude, sources, transport, and fate of PFAS to best target management actions and source control efforts

Image credit: CASA
Project Overview

Phase 1
Monitor representative subset of facilities in Q4 2020

• 15 representative facilities were chosen to participate based on size, geography, treatment processes and service area characteristics
• Sample influent, effluent, and biosolids using target and total oxidizable precursors (TOP) analysis

Phase 2
Additional monitoring and analysis based on Phase 1 Results (Beginning in Q1 2022)

• Subset of Phase 1 agencies
• Followup on Phase 1 data gaps
• Investigate PFAS sources
PFAS Analytical Methods

TOP (Total Oxidizable Precursors)

Target PFAS

Perfluorocarboxylates (e.g. PFOA)
Phase 1 Results
No clear trend observed from industrial flows

PFAS in municipal facilities generally comparable

Median: 27 ng/L
TOP results indicate significant presence of precursors

Decreasing industrial flows

Median of target = 27 ng/L
Concentrations of PFAS in WWTP Effluent

Influent = 27 ng/L

Median = 58 ng/L
Sum of PFAS measured in effluent increased compared to influent

Effluent Median = 58 ng/L
Influent Median = 27 ng/L
Bay Area PFAS detections generally lower than Preliminary Statewide Results

- BACWA influent median: 27 ng/L
- BACWA influent median with TOP: 231 ng/L
- Statewide influent median: 66 ng/L
- Statewide influent median of facilities with 100% residential flow: 95 ng/L

- BACWA effluent median: 58 ng/L
- BACWA effluent median with TOP: Not part of Phase 1 Study
- Statewide effluent median: 115 ng/L
- Statewide influent median of facilities with 100% residential flow: 146 ng/L
Municipal biosolid samples generally comparable

Median: 178 ng/g
Wet ash sample

Median = 594 ng/g
Main Takeaways from Phase 1

- Sum of PFAS concentrations in municipal influent, effluent, and biosolids generally comparable among POTWs for each matrix
- Quantified concentrations of PFAS are higher in effluent than influent, likely due to transformation of precursors
- Significant presence of unknown PFAS precursors in influent and biosolids
- BACWA Phase 1 results are about $\frac{1}{2}$ preliminary statewide results for influent and effluent
- BACWA and preliminary statewide results both show 100% residential service areas have higher quantified PFAS concentrations compared to mixed residential/commercial/industrial service areas, but no difference for TOP
Phase 2 Planning
On to Phase 2: Taking a closer look at 6 facilities

1) Data gaps from Phase 1
 ○ TOP in effluent
 ○ Groundwater
 ○ PAP analysis
 ○ TOF

2) Source Investigation
 ○ Commercial/industrial/residential service areas
 ○ Food waste
 ○ Specific industries
Top Priority for Phase 2 Study Objective – understand sources of PFAS entering sewershed
Top Priority for Phase 2 Study Objective – understand sources of PFAS entering sewershed

- Focus on where PFAS is coming from, in addition to where it’s going
- Sample upstream in sewershed to understand PFAS concentrations from different service populations in sewershed
- What is the relative importance of residential flows compared to commercial and industrial flows?
 - Which industries or commercial entities are important sources?
What industries or types of businesses are unique or are disproportionately high sources of PFAS (if any)?

- Car washes
- Laundries/carpet cleaners
- Manufacturing
- Hospitals
- Prisons
- Military facilities
- Food waste/organics
Phase 2 Project Timeline

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling and analysis plan complete</td>
<td>February 2022</td>
</tr>
<tr>
<td>Sampling</td>
<td>March through May 2022</td>
</tr>
<tr>
<td>Lab analysis and data quality assurance</td>
<td>June through November 2022</td>
</tr>
<tr>
<td>Analysis and internal discussion of results</td>
<td>December 2022 through April 2023</td>
</tr>
<tr>
<td>Draft report</td>
<td>June 2023</td>
</tr>
<tr>
<td>Final report</td>
<td>September 2023</td>
</tr>
</tbody>
</table>
Is there information we can use from the statewide effort?

- Compare R2 data to statewide 13267 data – apples to apples
- Consulting firm volunteered to synthesize statewide
 - Characterization of residential signal
 - Investigation of outliers
 - Correlation with service area, treatment technologies, others
Acknowledgements

- Participating POTWs and their staff
 - CCCSD, CSM, DSRSD, EBMUD, FSSD, NSD, PA, SFO, SFPUC, SJSC, USD, VFWD

Target data available at: https://geotracker.waterboards.ca.gov/